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ABSTRACT

This paper investigates the possibility of describing vowels

phonetically using an automated method. Models of the
phonetic dimensions of the vowel space are built using two

multi-layer perceptrons trained using eight cardinal vowels.

The paper aims to improve the positioning of vowels in the
open-close dimension by experimenting with a parameter in

the model � which is the parameter which controls the slope

of the sigmoid function employed in the multi-layer percep-
trons.

1. INTRODUCTION

Vowels are described in phonology and traditional phonet-

ics with the three major parameters of height, backness and
rounding, as well as additional parameters like nasality and

tenseness. Although backness, height and rounding are of-

ten de�ned articulatorily, it is now widely assumed following
Ladefoged [1] that the labels are primarily acoustic or per-

ceptual, and relate to perceptually motivated transforms of

F1 (height) and e�ective F2 (backness and rounding).

Vowels are traditionally described by phoneticians by listen-
ing to the vowels, and then placing a vowel symbol onto the

cardinal vowel chart or assigning it appropriate diacritics ac-

cording to learned auditory models. Figure 1 illustrates a
three dimensional cardinal vowel system. This traditional

method requires extensive auditory training, and is not fea-

sible for non-phoneticians.

Is it possible to describe vowel quality without the skills of an

experienced phonetician using a method which automatically

places a given vowel into a space which is de�ned by a set

of reference vowels and approximates to the phonetic space

used by phoneticians?

The eight cardinal vowels (Fig.1) produced by an experienced

phonetician trained in the British tradition represent the ex-

tremities of the dimensions \front-back", \open-close", and
\rounded-unrounded", and together form an external frame-

work for the vowel space of that speaker. An automatic

method [3] for placing the English vowels produced in stop
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Figure 1: A three dimensional model of the vowel space

(after Ladefoged [2])

consonantal context by the same speaker has already been
reported [4]. Good performance for front vowels but much

poorer performance for back vowels focused attention on the

acoustic impact of rounding on these reference vowels.

The four primary cardinal vowels (vowel 1 [i], 4 [a], 5 [�] and
8 [u]) were then selected from the eight cardinals to overcome

the lip rounding e�ect introduced by some of the reference

vowels. The placement of the same test vowels showed some
improvement when using just these four reference vowels.

The mean relative positioning of the vowels (across all con-

sonantal contexts) approximated to the relative positioning
of the vowels when measured acoustically and placed on an

F1 by F2-F1 plane [5].

Critical observations were made in two previous studies [4,5]

that the resolution of the vowel positioning appears to be

rather sensitive to di�erencies in the consonantal context,

and that in individual contexts (especially in study [5]) some

test vowels were often placed the extremities of the \close-

ness" dimension where only the cardinal vowels would be

expected. It was hypothesised that this might be related to



non-linearity in the output stage of the automatic process.

The present study was designed to examine this hypothesis.

2. METHOD

The vowel space which this study is attempting to model

is described by two dimensions that are correlated with

the articulatory dimensions \front-back" and \open-close".
An arti�cial neural network with a Multi-Layer Perceptron

(MLP) architecture was used to model each of the dimen-

sions. MLPs with one hidden layer were used because of
their ability to encode relationships of any complexity [6].

All the spoken vowel data were analysed in `frames' of

12.8ms, with adjacent frames having a 6.4ms overlap, by

passing them through a Hamming window, and then de-
riving 13 Linear Predictive Cepstral Coe�cients (LPCCs)

for each frame. The MLP training data comprised those

parts of four repetitions of the cardinal vowels where F0 re-
mained constant. The MLPs were trained using the back-

propagation algorithm in which MLP outputs generated by

frames of LPCCs were compared with the \back" and \close"
articulatory labels as shown in Table 1.

After training the MLP models became detectors for the ar-

ticulatory feature for which they were trained. In the test-

ing process, analysed frames of the English vowels were pre-
sented to the input of each detector which generated the

probability that its feature was present in the input data.

In this study the probabilities generated by the \closeness"

detector are subjected to analysis to investigate to what ex-
tent non-linearity in the output stage of the \closeness" MLP

is responsible for the performance observed in the earlier

studies reported above.

cardinal articulatory back close round

vowel description

i1 front-close-unround 0 1 0
y9 front-close-round 0 1 1

516 back-close-unround 1 1 0

u8 back-close-round 1 1 1
�5 back-open-unround 1 0 0

�13 back-open-round 1 0 1

a4 front-open-unround 0 0 0
�12 front-open-round 0 0 1

Table 1: Articulatory labels for the reference vowels.

Figure 2 is an example of a MLP with one hidden layer.

Every node is fully connected to every node in the adjacent

layers. The output ai;j of the node j of layer i is input to
every node of the next layer i + 1. The output ai+1;j is

calculated as:

ai+1;j = f(
PN

j=1
wi;j � ai;j)
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Figure 2: An example of MLP
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Figure 3: Sigmoid function with � = 1:0 and � = 0:1

where function f(:) is called the activation function.

The sigmoid function:

1=(1 + e��x)

is popularly used for classi�cation problems. The non-

linearity of the sigmoid function increases with �. � = 1:0
was used for the previous studies producing a highly non-

linear activation function. Figure 3 shows a �gure of sigmoid

function with � = 1:0 and � = 0:1.

Intuitively, one can understand that it is desirable to have

a highly non-linear sigmoid function as activation function

for classi�cation problems as it will map most of the input to

an output which is close to maximum or minimum indicating
the class membership of that input. In our application we are

looking for mapping that will provide graded interpolation

between the cardinal vowel extremities. Thus a more linear
output stage mapping using a small � would appear to be

appropriate.

In the present study, we experimented with four di�erent

values of �, namely: � = 0:1, � = 0:25, � = 0:5 and � = 1:0
to test our hypothesis. For each value of � a new archi-

tecture of MLP had to be determined as more or less non-



linearity was available in the output stage. As in previous
studies the number of hidden units was increased until no

further improvement in the modelling of the training data
was observed. The resulting architecture was then trained

100 times using di�erent initial conditions so that subopti-

mal training solutions could be eliminated. For each � the
MLP giving the best classi�cation of the training data was

used to process the English vowels.

3. REFERENCE VOWELS

The reference vowels used in this study were derived from

the vowel model expressed by Figure 1. The aim was to
use cardinal vowels that were maximally extreme on the two

dimensions of front-back and open-close. The eight cardinal

vowels are 1 [i], 4 [a], 5 [�], 8 [u], 9 [y], 12 [�], 13 [�] and
16 [5].

Five repetitions of each cardinal were recorded in a sound

booth by our speaker. An F1/(F2-F1) plot was made of

these vowels from conventional wide band spectrograms, as
shown in Figure 4.
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Figure 4: F1 vs F2-F1 plot for phonetician's cardinal vowels
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4. ENGLISH VOWELS

Five repetitions of English vowels in the context of

[stop][vwl]d utterances were produced by our speaker, where:

[stop] represents one of the six phonemically voiced and

voiceless labial, alveolar, and velar plosives of English (/b,

p, d, t, g, k/); [vwl] represents one of the eleven nominally

monophthongal phonemes (/i, *, �, �, �, �, =, V, u, �, �/);

and d is /d/. The [stop][vwl]d utterances were manually seg-

mented and labelled according to the procedures described

by Ran [7]. Only the pseudo steady-state vowel interval was
of interest for this study.

These vowels were transcribed by the phonetician, and

placed on a traditional chart showing height and backness,

with rounding indicated separately { see Figure 5. This �g-
ure shows an unremarkable auditory con�guration typical

for the British English accent of the speaker, with some ap-

parent in
uence from Australian English. Thus the /u/ is
considerably fronted ([T] >); the /=/ is a close-mid [o]; the

/�/ is closer than open-mid, and the /�/ is closer and more
front. An F1/(F2-F1) plot of the English vowels from con-

ventional wide band spectrograms also re
ects this pattern

(Figure 6).

Open

Open-mid

Close-mid

Close
Front Central Back

neutral rounding
rounded
slightly rounded

/�/

/i/

/*/

/�/

/�/

/�/

/�/

/�/

/=/

/V/

/u/

Figure 5: English vowel description by a phonetician.
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in b-d context.

5. RESULTS

The results of this study comprise the \closeness" detector's

output levels for all the English vowels in each consonantal
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Figure 7: Histogram of output from MLP for all test sam-

ples for (a) top left: � = 0:1; (b) top right: � = 0:25; (c)

bottom left: � = 0:5; (d) bottom right: � = 1:0

context that were processed. These output levels, each lying
within the range from 0 to 1, were collected into 11 bins and

plotted as a histogram in order to indicate graphically the
proportion of output levels existing across their total range.

If our hypothesis is true then for large � there should be a

clustering of output values at the extremities of the range,
but this clustering should be less obvious as � is reduced.

The histograms generated for the four values of � are pre-
sented in �gure 7. One can observe from the Figure 7 that

the number of cases where the input is placed to the extrem-
ities does not decrease by decreasing the �. These results

disprove our hypothesis.

6. DISCUSSION

The failure of our hypothesis to be sustained by these exper-

iments turns our attention to other factors which could lie
behind the unexpected behaviour of our MLP feature detec-

tors.

It should be noted that most contemporary wisdom on the

training and testing of MLPs is based on the fact that the
population of the training samples is in some way represen-

tative of the population of samples used to test the MLP.

When this is the case the full input space to be encoun-
tered by the MLP is represented in its training input. In

this situation, the MLP can interpolate between its training

data points to classify its test data. The task that we are

giving to the MLP is to interpolate between extremity data

by using multiple examples of just two \open"/\close" vowel

pairs whose spectral di�erences are themselves di�erent from

each other. While the MLP is known to be quite capable of

encoding multiple pathways between input and output, the

relative sparseness of the training data space compared to
the testing data space may need some special care which we

have currently ignored.

Two possible approaches to this problem are suggested.
Firstly, we could introduce an additional \standard reference

vowel" in the form of the \schwa" or neutral vowel. This has
a clear articulatory description as do the primary cardinals

and would represent a comprehensively intermediate spec-

tral shape on which to train and which can be labelled 0.5 on
both \backness" and \closeness" dimensions. Secondly, the

distinctive spectral shape of the primary cardinals could be

used to tailor the most appropriate cepstral range on which
to base the training. The present range is selected from con-

ventional experience with speech sound classi�cation systems

and while it may be appropriate for the test vowels, it may
not be appropriate for the training set currently in use.

The results for automated vowel quality description that

have already been achieved, based on averaged performance

over six consonantal contexts, have indicated that vowels
can be placed with reasonable accuracy in certain areas of

the vowel space. We have not yet achieved our goal of deter-

mining the optimum conditions of acoustic representation,
training procedures, and modelling methodologies that will

ensure acceptably accurate placement throughout the vowel

space. The degree of accuracy ultimately required also needs
to be determined with respect to cross-linguistic di�erences

in vowel acoustics (so-called linguistic phonetic di�erences).

We propose to pursue this goal by exploring further re�ne-
ments to our approach such as those indicated above.
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