聲調音韻學研究—鎮海方言雙音節詞

連讀變調的聲學語音學分析

費爾·羅斯（Phil Rose）

1. 導言

本文有下述雙重目標：提供對吳方言分支之一鎮海話的詳盡的聽覺和實驗報告；從語言學角度出發對這一材料作音韻分析。

我將首先討論單音節獨立形式，然後討論雙音節變調過程。

2. 獨立形式的聽覺描寫

在鎮海話中，任何獨立出現的單音節或單音節詞都屬於六種互相對立的音節類之一。（“音節類”即傳統所謂“聲調”）我採用Sherard的這個術語是為了強調音節類之間的區別不僅與“聲調”一詞一般所表達的音高有關，而且涉及其他若干與音高同時產生、反覆出現，貫穿整個發音過程的語音特徵。表（一）顯示鎮海話六個音節類的聽覺特點。

<table>
<thead>
<tr>
<th>音節類</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>擊 [tei 441]</td>
<td>奔 [pêŋ 441]</td>
<td>音 [?jiŋ 441]</td>
</tr>
<tr>
<td>(2)</td>
<td>鶴 [tei’i 323]</td>
<td>本 [pêŋ’i 323]</td>
<td>影 [?jiŋ’i 323]</td>
</tr>
<tr>
<td>(3)</td>
<td>騎 [tei 231]</td>
<td>盆 [pêŋ 231]</td>
<td>嬴 [jiŋ 231]</td>
</tr>
<tr>
<td>(4)</td>
<td>其 [tei 213]</td>
<td>笨 [pêŋ 213]</td>
<td>引 [jiŋ 213]</td>
</tr>
<tr>
<td>(6)</td>
<td>直 [tei’i 23]</td>
<td>白 [pêŋ 23]</td>
<td>葉 [jiŋ 23]</td>
</tr>
</tbody>
</table>

表（一）：鎮海話音節類舉例。
音節類（1）：起始短平的高降調，短於平均音長，語言正常，尾部音漸止或帶有喉喚聲。
音節類（2）：以喉喚音收尾的中降中調，平均音長，語言正常或緊張。
音節類（3）：低嗓中降調，平均音長，語言帶聲門摩擦聲[?]或嘶啞聲[?]⑧，尾部音漸止或帶有喉喚聲。有證據表明，在發這種音節類時，有種肺部運動導致的聲門底部壓力的急速釋放，而不是音帶緊張度的控制⑤。
音節類（4）：低降調，起始短平略為下沉，喉喚音收尾，最長的音節類，語言帶聲門摩擦聲或嘶啞聲。
音節類（5）：極短的高平或高降調，喉喚音收尾，語言緊張，最短的音節類。
音節類（6）：極短的低降調，喉喚音收尾，語言帶聲門摩擦聲或嘶啞聲，比音節類（5）略長，與音節類（3）一樣，發音時有肺部運動導致的聲門底部壓力的急速釋放。

除了上述韻律性質，音節類的子集合取決於音節成份和結構特徵的不同。（1）、（2）、（5）類的音節起始部份與（3）、（4）、（6）類不同，而（5）、（6）類的韻母迥異於其餘四類。從音節成份說，（1）、（2）、（5）類起始部份是送氣或不送氣的清塞音、長清擦音，或前有喉喚音的響音[i? m, ?l, ?j]等：（3）、（4）、（6）類起始於伴有聲門摩擦音的清塞音如[t, tʃ]，短清擦音如[s, s'], 或逐漸週化的帶聲門摩擦音的響音如[m, l, j]。在構架上，音節類（1）、（2）、（5）顯示了起始輔音中送氣與不送氣塞音的對立及[h]與零聲母的對立，這些對立不存在於（3）、（4）和（6）類中。（1）、（2）、（5）類以響音輔音為首的詞很少，其中大部份為純口語成份即“白讀”詞素，在（3）、（4）和（6）類中沒有這一限制。

（5）、（6）類與其他類在音節成份上的區別在於元音音質和長度。（5）、（6）類的元音短且“鬆”（指在聽覺上為非邊緣性元音），其他音節類有長邊緣性元音或短非邊緣性元音加上[n]。在結構上，（5）、（6）類與其他各類的區別在於前者互為對立的韻母數目大大少於後者：（5）、（6）類共有五個對立的單元音韻母，而其餘四類有約45—50個韻母（包括口腔的鼻音化的單元音，自成音節的輔音，降式雙元音，以及元音加上[n]）。

3. 獨立形式的聲學材料

本文作者已經相當詳盡地描寫過若干漁海發音人的獨立音節類的主要聲學特徵即基頻（F0）、幅振幅（Ar）和音強（D）⑥。F0、Ar和D分別與聽覺可感知的音高、音強和音長相對應，儘管這些對應遠不是直接的⑦。用於本文研究的發音人的獨立音節類的聲學材料見圖（一）和圖（六A）。圖中所示各音節類的F0和Ar曲線為絕對音高的函數，代表大約十二個CV音節的平均值（C指清阻塞音，V指所感知的單元音）。圖（一）顯示各音節類中F0、Ar與D之間的關係，圖（六A）顯示各F0之間的關係。（2）、（4）、（5）、（6）類中F0在最高後急劇下降的現象是音節尾喚塞音的聲學標誌，在聽覺上不能被感知為音高下降。
4. 獨立形式的分析

已被描寫過的語音和結構事實以及下文將討論的連續變調情況表明鎌海話六種音節類並非各成一體，無法分析的：相反，它們反映了三種更基本的音節特徵的相互關係，這些音節特徵是音域（即聲帶態動的方式），音截和音高指標，它們以下述形式組合而揭示各音節類的特徵。

<table>
<thead>
<tr>
<th>音節</th>
<th>長 (s)</th>
<th>短 (q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>音域上 (U)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>音域下 (L)</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>音高指標</td>
<td>高降 (ˊ)</td>
<td>高降階 (ˇ)</td>
</tr>
</tbody>
</table>

在本文中，我略去音截符號 "s" 和短音節中的音高指標 "−"，這樣六種音節類可表達為：(1) Û，(2) Ḛ，(3) Ł，(4) Ł，(5) Uq，(6) Lq。
表（二），鎮海話雙音節詞連讀變調的聽覺特徵。圖中"1"表示重讀；"2"為帶聲門摩擦聲或嘶啞聲；"3"為喉塞音；1—20為音節類組合編號。

5. 連讀變調的聽覺描寫

表（二）顯示鎮海方言雙音節詞彙單位的聽覺特徵，包括音高、重音、聲帶顫動方式以及發音停止的方式。這些詞彙單位按所屬音節類排列編號，第一音節（S₁）在右，第二音節（S₂）在上。例如，當S₁是音節類3（L），S₂為任何長音節類之一（U, Ú, L, Ð）時，變調結果為語音帶聲門摩擦聲或嘶啞聲的長低平調加上一個高降調的重讀音節（組合14）。變調組合7和8被寧波地區的發音人看作典型的鎮海音。

6. 聲學分析材料

本文分析一青年男性鎮海人的發音。聲學分析材料包括402個結構為C₁ V₁ C₂ V₂ 的雙音節詞（C為輔音聲母，V為元音韻母，數字代表音節次序）。為了控制某些內在效應，元音和輔音的選取盡可能符合以下限制：C₁為阻塞音（U音節中）或響音和帶聲門摩擦聲的阻塞音（L音節中）；或例詞採用大致相同數量的高元音和低元音，以便在某種程度上控制元音音質對前後兩個元音的F₀和AR的影響，同時選擇聽覺上的純單元音以最大程度地減少元音音質對元音自身的影響。
除了 S_1 為音節類（6）（圖（二）中組合 1–6），所有組合中 LS_2 的阻塞音為聲帶正常
韻動的濁音如 [b、d、z]，音節類（6）後的 LS_2 的阻塞音為伴有聲門摩擦聲的清音如 [p、t、
s]。音節類（3）（b）的“頭”為名詞後綴，單念時為 [t̚ə̆ʔ]；在“排頭”中變為正常濁音
[p̚ə̆ 'tə̆ʔ]，但在“舌頭”中仍為伴有聲門摩擦聲的清音 [p̚ə̆ 'tə̆ʔ]。

為了弄清元音同 L 音節的 C_2 的濁化效果，變調組合 9–20 按照第二音節的深層音域分成
兩組；在 U 音節，C_2 為不送氣清阻塞音如 [p、ts、t、s]，在 L 音節，C_2 為響或阻塞音，都是
正常音的濁音。

7. 聲學分析過程

我採用具有時間範圍分辨能力的寬頻頻譜（300 赫茲），將每個詞分解為第一音節元音
（V_1），元音間輔音（C_2）和第二音節元音（V_2）。濁 C_2 範圍起至頻譜上可以觀察到的輔
音性阻礙（堵音）或封閉狀態（塞音）的起點到阻礙或封閉的釋放。清 C_2 終止於阻礙或封
閉釋放後新頻率週波的起始。在任何情況下，音素交界處都有清音的中斷，這可以根據一個
（至多兩個）喉塞脈衝加以確定。表（三）顯示 V_1、C_2 和 V_2 的 D 平均量值和標準差。

<table>
<thead>
<tr>
<th>n</th>
<th>V_1</th>
<th>C_2</th>
<th>V_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>U + U (16)</td>
<td>32.6,6.2</td>
<td>17.4,3.6</td>
</tr>
<tr>
<td>13</td>
<td>U + L (16)</td>
<td>31.8,8.4</td>
<td>7.7,1.4</td>
</tr>
<tr>
<td>14</td>
<td>U + Lq (10)</td>
<td>25.9,8.2</td>
<td>14.0,1.8</td>
</tr>
<tr>
<td>15</td>
<td>L + U (20)</td>
<td>30.4,7.0</td>
<td>16.5,4.7</td>
</tr>
<tr>
<td>16</td>
<td>L + Lq (10)</td>
<td>32.1,8.8</td>
<td>8.0,2.4</td>
</tr>
<tr>
<td>17</td>
<td>L + Uq (9)</td>
<td>30.7,8.0</td>
<td>15.5,3.4</td>
</tr>
<tr>
<td>18</td>
<td>L + Lq (9)</td>
<td>32.1,5.9</td>
<td>7.9,2.3</td>
</tr>
<tr>
<td>19</td>
<td>U + U (17)</td>
<td>25.9,5.2</td>
<td>14.5,2.7</td>
</tr>
<tr>
<td>20</td>
<td>U + Lq (9)</td>
<td>29.1,5.4</td>
<td>7.0,1.8</td>
</tr>
<tr>
<td>21</td>
<td>U + Uq (9)</td>
<td>23.3,6.1</td>
<td>12.7,2.9</td>
</tr>
<tr>
<td>22</td>
<td>U + Lq (14)</td>
<td>33.0,6.5</td>
<td>7.2,2.9</td>
</tr>
<tr>
<td>23</td>
<td>L + U (13)</td>
<td>28.8,5.5</td>
<td>14.4,3.5</td>
</tr>
<tr>
<td>24</td>
<td>L + Lq (10)</td>
<td>28.6,5.6</td>
<td>15.2,5.6</td>
</tr>
<tr>
<td>25</td>
<td>U + Uq (16)</td>
<td>29.5,6.4</td>
<td>7.6,1.9</td>
</tr>
<tr>
<td>26</td>
<td>U + L (21)</td>
<td>28.9,7.1</td>
<td>17.4,5.2</td>
</tr>
<tr>
<td>27</td>
<td>U + Lq (9)</td>
<td>23.9,8.2</td>
<td>15.3,3.4</td>
</tr>
<tr>
<td>28</td>
<td>L + U (15)</td>
<td>32.1,6.6</td>
<td>16.3,4.2</td>
</tr>
<tr>
<td>29</td>
<td>L + Lq (10)</td>
<td>31.6,7.7</td>
<td>7.2,2.5</td>
</tr>
<tr>
<td>30</td>
<td>U + Uq (15)</td>
<td>7.4,1.7</td>
<td>12.9,4.1</td>
</tr>
<tr>
<td>31</td>
<td>Uq + L (12)</td>
<td>6.1,1.4</td>
<td>7.0,3.8</td>
</tr>
<tr>
<td>32</td>
<td>Lq + Uq (9)</td>
<td>6.7,1.3</td>
<td>15.1,4.5</td>
</tr>
<tr>
<td>33</td>
<td>Lq + Lq (10)</td>
<td>8.7,1.4</td>
<td>7.2,1.9</td>
</tr>
<tr>
<td>34</td>
<td>Lq + U (7)</td>
<td>6.5,0.4</td>
<td>17.5,1.8</td>
</tr>
<tr>
<td>35</td>
<td>Lq + Lq (9)</td>
<td>5.0,1.4</td>
<td>15.7,4.3</td>
</tr>
<tr>
<td>36</td>
<td>Lq + L (10)</td>
<td>8.2,1.6</td>
<td>9.1,4.3</td>
</tr>
<tr>
<td>37</td>
<td>Lq + Lq (11)</td>
<td>10.3,1.3</td>
<td>8.5,3.2</td>
</tr>
<tr>
<td>38</td>
<td>Lq + Uq (12)</td>
<td>6.7,1.7</td>
<td>11.0,5.0</td>
</tr>
<tr>
<td>39</td>
<td>Lq + Lq (11)</td>
<td>10.6,2.4</td>
<td>7.7,2.2</td>
</tr>
</tbody>
</table>

表（三）: 鄭海話雙音節詞連讀變調音延 D 的平均量值（第一數字所示）和標準差（第
二數字所示）。表中 n 為各類組合所用例詞數；左側編號 1–20 與表（二）的聽覺形式
的對應。D 的平均量值和標準差的單位為毫秒。
<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
</tr>
<tr>
<td>k</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
</tr>
</tbody>
</table>

(三) 可知 \(V_1 \) 的80%的值是 \(31.8 \times 0.8 = 25.4 \)（图）。
表（四）裝飾於雙音節詞連調變調點F0（赫茲）和振幅AR（分貝）的平均值和標準差（四個數字自左至右分別表示F0平均值、F0標準差、AR平均值、AR標準差）。表中括號內數字為各組合所用例詞數；左側百分比為音延上的測定點；編號1—20與表（二）的聽覺形式相對應。

圖（二）顯示各類調調組合中F0和AR的平均值以說明它們與絕對音延間的函數關係。
聲調音韻學研究—鎮海方言雙音節詞
8. 聲學分析結果

本文所研究的各音節在聲學上都可能有許多取決於各異環境的變體，影響變體的決定性因素包括：音節類出現於雙音節詞的第一位置還是第二位置，或是呈獨立形式，重讀或非重讀；它前面是長音節還是短音節；它後面音節的長短；相鄰音節的音高；是先於還是後於
濁 C₂ 或清 C₂。因此 Û 除獨立形式（見圖（一））以外，有 13 種可能的變體。當 Û 為 S₁ 時，它可能重讀 [44]，也可能非重讀 [33]；重讀與非重讀 S₁ 後的 C₂ 可能是濁音，也可能是清音；同時，S₁ 可能是長音節，也可能是短音節。當 Û 為 S₂ 時，祇有重讀形式 [441]，但其聲母 C₂ 可能是清音，也可能是濁音；它前面的 S₁，可能是長的中音高 [33] 或低音高 [11]，也可能是短的低音高 [11]。

區分決定 S₁ 不同聲學形態的內在因素是很容易的，因為何種形式是何種音節類的變體是顯而易見的。因此，在討論 S₁ 時，我先說明這些因素而不考慮任何特定的音節類。對於許多 S₂ 形式來說，由於顯著的外在調調變化作用，我們無法事先確定何種形式是何種音節類的變體。例如，我們不知道重讀 L 後的重讀' L 音節是 L 的變體還是 Û 的變體；我們也不知道重讀 S₁（' Û；U；L；Uq）後的 S₂ 屬於什麼音節類。在這種情況下，祇有考察了所有可能起作用的內在因素與不同聲學形式的關係，我們纔能了解在連讀變調的過程中究竟發生了什麼。因此，在討論 S₂ 形式時，我把假定存在的所有內在因素逐—與各音節類聯繫起來分析，儘管這樣做有時會造成重複。

8.1. 第一音節

S₁ 有 34 種聲學形式，包括 Û 和 L 的 8 種變體， Û L 和 Uq 的 4 種變體，以及 Lq 的 6 種變體。造成 S₁ 變體的主要內在因素是其後的 C₂ 濁化與否。C₂ 引起 S₁ 在 D F₀ Ar 三方面的微細而系統的變化，如同可以預料得到的，濁 C₂ 前的 V₁ 的 D 一般較長（約長 3—4 厘秒，試比較合組 14 中 V₁ 的 D⁵）。濁 C₂ 前的 Ar 沒有急劇的下降，V₁ 的最後 20—30% 的 Ar 值相對較高（試比較合組 7 和 8 的 S₁ Ar 曲線）。V₁ 最後 20% 的 F₀ 顯著地略高的上陸現象，不過這祇限於具有高 F₀ 起始值的 S₂ 前的 `音節（試比較合組 9 和 13 中 S₁ 的 F₀ 曲線）。

除了 C₂ 的作用，有證據表明 S₂ 的 F₀ 起始值與 S₂ 音節長短可能是與 S₁ 的 F₀ 和 D 有關的次要因素⑦。

對 S₁ 變體的各分類的平均聲學數據的計算使我們得以忽略不計上述語流內在作用（這些內在作用被排除後，非重讀 L 和 L 之間再也沒有具有統計意義的區別，所以被併併為一，以下用 L 表示），原來的 34 種不同形式被減縮成 7 個不同的 S₁ 音高相應的 7 種形式，圖（三 A）顯示這 7 種形式的聲學特徵，表（五）是有關數據。
圖（三）· 鎮海話雙音節詞 S₁ 和 S₂ 的連讀變調形式。圖中上部左側標度為 F₀（赫茲），下部左側標度為 Ar（分貝），水平標度為 D（厘秒）。A 標示 S₁ 变調形式，B 標示非連讀 S₂ 變調形式，C 和 D 標示連讀 S₂ 變調形式，點線顯示短音節類變調形式。

表（五）· 圖（三）中所有曲線的平均值和標準差的綜合數據。圖中左側百分比標示在 D 上的測定點，四個數字自左往右分別標示 F₀ 平均值、F₀ 標準差、Ar 平均值、Ar 標準差。D 為延長，D 右區數字中第一數字為 D 平均值，第二數字為 D 標準差。n 為各類組合所用例詞數。

圖（三 A）表明，S₁ 的 F₀ 曲線相當清楚地反映了音高形態。在從 110 赫茲到 180 赫茲之間約 70 赫茲的範圍內，分佈着短音節類的兩條短 F₀ 曲線，其中一條 Uq 構成最高曲線，另一
條 Lq 為低曲線；長音節類的五條長曲線中，三條呈水平狀態，兩條呈上傾狀。這七條 F0 曲線從統計角度看有四個不同的起始點，其中三點大致均勻地分佈在 F0 範圍的上、中、下值上：L 音節類起始點集中在約 120 赫茲的低值上，'Ü 和 Ú 類起始點集中在約 146 赫茲的中值，Uq 類在 174 赫茲的高值，而 'U 的 F0 曲線起始點與眾不同，大致在中值與高值起始點之間的 155 赫茲。這一模式（低起始點集中於 120 赫茲，低、中、高值均勻分佈）也是獨立形式音節類的特點（見圖（六 A））。

![圖（四）各音節類別形式 F0 曲線（曲線）與重讀 S1（A）和非重讀 S1（B）的相應 F0 曲線（細線）的比較。圖中左側標度為 F0（赫茲），水平標度為 D（厘秒）。

圖（四）

祇須考慮到兩個與重讀有關的內在作用，S1 的 F0 曲線可以毫無困難地與獨立形式的調形聯繫起來（見圖（四））。

（一）重讀音節前的非重讀位置上的所有曲線簡化為水平狀態；水平線的高度取決於該音節的音域，即У曲線變為中平，L 曲線變為低平（У的高降曲線變為中平，L 和 L 的低凸線和低凹線中和為低平長線，短低隆線 Lq 變成短低平曲線。見圖（四 B））。

（二）S1 的重讀導致元音後部 F0 的上際，因此重讀 'У音節類在起始部份祇稍作下降，隨即比在獨立形式中時更快地上昇到更高的峰值；重讀 'У音節類後半部的 F0 被提陞而變成高平線；而 Uq 類在重讀時祇是變得更高些，其曲線可能是一個饒平緩維的凸形（見圖（四 A））。

從總體的水平高度和曲線形態來說，S1 的 F0 和 Ar 緊密相關（相關值 r = 0.94）。但是，儘管有極高的相關值，在總體的一致性中依然有三點差異。在 F0 與 Ar 的相應關係中一個細微然而具有統計意義的區別與 F0 曲線有關：上際 F0 音節在每個 F0 單位上的 Ar 比水平 F0 音節的相應點要稍高（1 分貝），同樣很明顯地，Lq 音節在 F0 單位上的 Ar 比 L 音節的相
應點高約3分貝。（不過我不清楚是否能就長和短的U音節作同樣的結論，因為Uq的F₀和Ar的數據對顯然取決於L、U和U的外推回歸線。）S₁重讀與非F₀和Ar的相互關係無關。

七種S₁的D的不同反映了長短音節之間的外在差異，也反映了由F₀特點決定的不同長音節之間的內在差異。就長音節而言，如其為水平F₀，那麼D與F₀高度成正比；如其為曲折F₀，那麼D與F₀高度成正比；同時，曲折F₀的音節頻短於水平F₀的音節頻。與獨立形式一樣，短S₁的D是相應的長S₁的D的1/4-1/3，這也許說明了長短音節的對立不在於元音的長度而在於“音際”的音節特徵，否則長短音節間元音長度的比率應該相當大 giả。S₁的D與重讀無關。

8.2. 元音之間的補音C₂

決定C₂聲學性質的主要因素是濁化。清C₂不顯示F₀和Ar，而濁C₂則作用顯著：F₀至少持續到持阻的中點，Ar在上喉部阻塞的起始點後下降1-6分貝（如果考慮到響音和阻塞音之間的區別，我們可以清楚地看到非重讀S₂的C₂要比重讀S₂的C₂多下降2分貝）。

清C₂的平均D差不多正好是濁C₂的兩倍，這意味着大約8厘秒的差別。C₂的D與S₂的重讀與否也表現出細微然而在統計上有意義的相應關係；重讀S₂的C₂，無論濁化與否，都比非重讀S₂的C₂長大約1厘秒。在這裏得指出，根據所觀察到的聲學材料，我們無法清楚地確認帶聲門摩擦聲的C₂（Lq後，S₂為L音節）與正常的濁C₂（S₂為非Lq後的L音節）之間聽覺上的差異 giả。

8.3. 第二音節—U音節後的重讀長音節（組合12和14）

![圖（五）：各音節類獨立形式F₀（粗線）與在重讀S₁位置上的相應音節類指標的F₀曲線（各種虛線）的比較。圖中垂直標度為F₀（赫茲），水平標度為D（厘秒），A為'U音節類指標，B為'Uq音節類指標，C為'U音節類指標。](image-url)
圖（五 A）顯示`後重讀長音節的 F₀ 曲線與獨立形式的 ÛF₀ 的比較。從圖中可以清楚地看到，非重讀 S₁ 後的深層表達為 U 長音節（即有清 C₂ 的長音節）的 F₀ 曲線與獨立形式的 Û 的 F₀ 非常相似，儘管它們的 D 要比獨立形式的短若干毫秒。深層表達為 L 長音節（即有濁 C₂ 的長音節）的 F₀ 與 U 音節相比，有較低的 F₀ 起始點和較低的、出現較後的峰值。此外，`後的重讀 S₂ 的音質總是呈正常狀態而不管它們屬於什麼深層音域。對上述事實最合理的解釋也許是，在非重讀 S₁ 後，說話人自然而然地準備發一個 Û 組的音節，而不同 F₀ 曲線之間的差異則反映了 C₂ 的濁化狀態和 S₁ 聲帶的顫動率對聲學參數的內在影響。換言之，非重讀 S₁ 後的所有重讀長音節（U、Û、L、L）都被中和為 Û 的變體。

與 S₁ 的情況一樣，影響 U S₂ 的內在作用力主要來自 C₂、C₂ 影響 V₂ 的 F₀、Ar 和 D。圖（五 A）顯示濁 C₂ 如何降低 V₂ 的 F₀ 起始點及其後延長 6 厘秒的曲線。這些內在作用的大小取決於 S₁ 的聲帶顫動率：如 S₁ 為低 F₀，S₂ 的 F₀ 起始點降低 20 赫茲；如 S₁ 為中 F₀，S₂ 的 F₀ 降低 10 赫茲。在 D 中的 20% 處，這一差距縮小為低 F₀ 後 10 赫茲，中 F₀ 後 5 赫茲。

與 C₂ 相反，濁 C₂ 後 V₂ D 的前 40% 部份的 Ar 要比清 C₂ 後的相對高些，起始點高 3~4 分貝，峰值高約 1 分貝，並提前 20% 出現；同時濁 C₂ 後 V₂ D 的 D 也要長約 1.5 厘秒。

當 C₂ 為濁音時，S₁ 的聲帶顫動率起作用於 V₂ 的 F₀ 起始點：低 F₀ S₁ 後的 V₂ F₀ 起始點比中 F₀ S₁ 後的低大約 8 赫茲。

圖（三 C）顯示非重讀 S₁ 後所有 Û 組變體的平均 F₀ 和 Ar，這些曲線由“+”和“－”表示。表（五）有有關數值。這裏 F₀ 和 Ar 又一次緊密相關（相關值 r = 0.85）。注意 Lq 後 Û 組的 F₀ 和 Ar（由 “Lq + Û” 表示）與`後，尤其是 L 後的 Û 組變體的平均值有具有統計意義的區別。

8.4 第二音節一`音節後的重讀短音節（組合 9 和 13）

圖（五 B）表明`後的重讀短音節的 F₀ 模式與長音節基本相似。（注意獨立形式 Uq 的 F₀ 起始部位比短 S₂ 略高，這說明 S₂ 的聲帶顫動率對短 S₂ 的同化作用要略強於對長 S₂ 的。另一與長音節的細微差異是獨立形式 Uq 的 D 並不比短 S₂ 長。）與長音節一樣，重讀短音節的音質總是呈正常狀態而不論其屬於什麼深層音域。顯而易見，Uq 和 Lq 在非重讀`後被中和為 Uq。Uq 聲學變體間的差異取決於內在因素即 C₂ 性質以及 S₁ 的聲帶顫動率。濁 C₂ 降低 V₂ 的 F₀ 起始點約 10 赫茲。不過不同於`後的長音節，短 S₂ 的 F₀ 峰值（出現在所有變體的 D 的 60% 時）在濁 C₂ 後要高於在 Lq C₂ 後高 4 赫茲，這是個不具有統計意義的區別。同樣不同於長音節，C₂ 對於 Ar 不表現出有規律的影響。如 S₁ 為低聲帶顫動率，它能引起 S₂ 的 F₀ 起始點下降 7~10 赫茲，下降值取決於 C₂ 濁化與否。

Uq 的聲學數值在 Lq 和 L`後面沒有什麼具有統計意義的差別，因而 Lq 後的 Uq 的數值被包括在 Uq 指標平均值的統計中（圖（三 C）中由“[L` '<Lq>']”+‘<U>q’ 表示）。

Uq 變體的 F₀ 範圍太窄而不足以顯示 Ar 對 F₀ 的回歸關係，但圖（三 C）表明，S₁ 為 Lq 音節一樣，Uq 變體在每個 F₀ 單位上的 Ar 比 Û 變體的要略高（1.3 分貝）。Uq 組 S₂ 基本上是長 Û 音節的 D 的 1/3。
8.5. 第二音節—L後的重讀長音節（組合7和8）

如同非重讀段後的長音節可以被分析為U的變體一樣，非重讀段後的長音節可以被分析為U的變體。導致L後的重讀段音節與U變體一致而不是L的變體的原因與上述U和Uq的情況是相同的（儘管L後的重讀段音節與L更接近。比較圖（三D）中曲線“"+L”和“L+Uq”），低音域音階落前；獨立形式U和非重讀段後的長音節聲學形式的區別取決於S₁的低聲道時動率和濁C₂的內在作用。注意，和U一樣，獨立形式U的D比相應的US₂變體長約5秒秒。

圖（五C）表明，與U獨立形式F₀起始部份8赫茲的下降現象相比，L後的重讀U音節
的F₀（由“L+U”標示）有較輕微的下降。下傾的原因在於S₁的低聲道時動率，正如我們在U和Uq的變體中看到的，它能夠壓低S₃F₀的起始點達10赫茲之多。在濁C₂後（由“L+U”標示）這種作用更大，濁C₂把V₂的F₀起始點壓低了16赫茲（在可比環境下U變體之間的差值為20赫茲），隨後的曲線逐漸下降C₂後的F₀曲線可用，並達到從統計學角度看相同的峰值。在14秒處，濁C₂後的F₀還是在統計意義上比濁C₂後的F₀低，因而濁C₂引起的F₀下沉持續時間比在U時長一倍，但是與U變體之間起始部份的差值沒有什麼不同。因此，聲響的F₀曲線指標影向音高的強度及在後期的持續時間。當聲調呈上降F₀時，輔音的內在作用時間較長，當F₀為降調時，長時間較短。那種比較持久的作用在聽覺上自然地易於感知為音高的區別。可能就是由於這種作用的緣故，我能聽出L後重讀U音節和L音節的音高差異。在L後的長音節為重讀F₀，因而音高差異比較難於感知。雖然US₂變體的Ar值的差別沒有達到具有統計意義的程度，與U變體同樣的作用是可以觀察到的。濁C₂後的Ar起始點略高，隨後Ar的凹形與直線的區別可解釋為L音節的輔音除阻後8秒處Ar的相對較高的音高又一反映。L音節伴隨的較低的F₀意味着這樣的音節與U變體一樣，輔音除阻後Ar與F₀的相當然較高：這一相關值再次高達0.93。

8.6. “`和`後的重讀第二音節—小結

以上討論的三種情況表明，除非S₁為Lq，當重讀S₂的聲學形式置於三種內在作用
（C₂，S₁的低聲道時動率，這以短音節類區分；獨立形式長音節類的較長D）的影響下時，
它們的聲學形式與相應的獨立形式U，U和Uq是一致的。從音韻學角度看，S₂形式反映了
下述兩種變化：
（一）轉化為上音域(U)；
（二）音高指標曲線同化，即S₁曲線同化S₂曲線，`後仍是`，`後仍是`。（這一變化必須
被置於已經討論過的把非重讀S₁曲線簡化為水平線的規則之前。）

8.7. 非重讀第二音節（組合10，11，15，16，17，18，19，20）

我們的材料包括16個不同的非重讀S₂的例子，分別出現在U，'L，'U和'Uq後，根據
長短和U，L音節分類。'U後的音高描寫為[31，32]，'L，'U和'Uq後的音高描寫[51，5]。
除了'U+q這一例外，濁C₂可以以預料的方式影響V₂的F₀。這一內在作用不大，盡使
V₁的F₀起始點和峰值比清C₂後的對應值低5赫茲或5赫茲以下，因此非重讀S₂表現出與重讀S₂不同的F₀差異；在重讀S₂中，清與濁C₂後的F₀起始點的平均差值要大一些，長音節時約15赫茲，短音節時約9赫茲，同時濁C₂後的重讀短音節實際上有較高的F₀峰值。濁C₂後的Ar起始點大約比清C₂後高3.0分貝，這一差異在佔半數的例子中清楚地顯示了統計上的分類意義。除此之外，重讀S₂與濁C₂和清C₂後的非重讀S₂的Ar形式沒有區別。

將四種重讀音節類‘Uq’、‘Ù’、‘U’、‘L’後的U、L音域的所有變體的綜合數據作一比較，可以清楚地看出‘U’和‘L’後的非重讀音節的聲學形式沒有區別，但‘Uq’後音節的F₀要比‘’後的高5赫茲左右（這是具有統計意義的區別），這差別太小以致無法在音高描寫上表現出來。Ar沒有相應的差別，這差別也許被與元音內在音質有關的差異掩蓋了。‘U’後非重讀S₂的F₀和Ar比‘Uq’和‘’後的低得多。圖（三B）顯示這些非重讀聲學形式（‘Uq+’指‘Uq’後音節，‘‘+’’指‘U’後音節；‘’+’’指‘U’和‘L’後音節；‘Uq和‘’後的Ar曲線合為一，由‘[‘Uq’、’’]+’’表示）。表（五）有有關數值。

‘U’，‘’和‘Uq’後非重讀S₂的D之間無具有統計意義的區別。長音節的平均D約17厘秒，是短音節的2.3倍。這一比值與重讀音節（‘U’）和短音節（‘Uq’）之間的比率相同。不過就絕對D而言，非重讀S₂比重讀S₂略短（長音節約4厘秒，短音節約2厘秒），儘管由於它們有較高的F₀值（至少在‘’和‘Uq’後），人們原本以為它們的內在D可能要比重讀S₂長一點°。

長音節F₀和Ar之間的區別也存在於非重讀S₂中，但在這裡短音節每個F₀單位的Ar比長音節高2.5~3.0分貝，這一差值比重讀S₂中的相應差值高一倍。

Ar與F₀的聯繫在非重讀S₂中更緊密（相關係數r=0.93），而重讀S₂（‘U’）中祇有0.85。儘管重讀與非重讀S₂中的F₀和Ar的相關係數都很高，重讀與否的區別看來主要表現在D前部40%部份的F₀和Ar的聯繫上，在這裡重讀‘U’的每個F₀單位有比非重讀S₂更高的Ar°。

與非重讀S₂形式有關的最有趣的事實是我們可以根據S₁的F₀曲線延伸到C₂的情況以4赫茲的誤差推斷S₁的F₀起始值（從圖（三A）和圖（三B）的F₀曲線中可以清楚地看到這一現象°），因此S₂的F₀起始點看來取決於S₁的聲帶顫動率的慣性作用，而S₂的其他F₀形態及一般聲學形態看來是聲帶緊張和’或聲門底部壓力的簡單的製造（對非重讀S₂而言，這種製造與產生音節尾塞音的咽部狀態有關）。值得指出的是，某些靶音重的重讀S₁後的非重讀S₂極弱，甚至輕化了，例如把組合15[344 51]說成[344 1]。

8.8. 非重讀S₂—小結

非重讀長短S₂的聲學特點在若干方面與相應的重讀S₂（‘U’和‘Uq’）不同，尤其是根據S₁的F₀曲線可推知非重讀S₂F₀曲線的事實說明非重讀S₂不應被視作任何一種音節類的外在變體，而應被看作是受重讀S₁制約的設定值。這也許能通過剛去非重讀S₂的音高指標和音域的說明，加入由重讀S₁音高曲線決定的音高值而作出形式化的表達。
例如：

音高→ \[
\begin{align*}
\{51(s)\} & / \{33\}^4 \\
\{5(q)\} & / \{11\}
\end{align*}
\]

音高→ \[
\begin{align*}
\{31(s)\} & / \{44\}
\end{align*}
\]

（‘ = 重音）

Lq 後的重讀音節（組合 1-6）

圖（六）各音節類獨立形式的聲學特徵（A）與 Lq 後音節的聲學特徵（B）的比較。圖中上部水平標度為 F o（赫茲），下部水平標度為 Ar（分貝），水平標度為 D（厘秒）；實線標示短音節類，虛線標示音節類 3（L）；實線標示其餘音節類。

包含 Lq S 1 的組合的詞調性質很清楚：非重讀 S 1 的短低水平音高是已經描寫過的曲線簡化作用的結果，而 Lq 後六種聲學形態與相應的獨立音節類的關係很容易辨認。不過在語音上，Lq 後的音節類與相應的獨立形式不同；同時，由於獨立形式與 S 2 指標等值，所以 Lq 後音節類後相應的 S 2 指標（‘U, ‘Uq, ‘U）不同。這種區別存在於 F o, Ar 和 D 三方面，

但最明顯的是 F o：Lq 後音節類的 F o 在 D 的後半部普遍上陞（比較圖（六 A）和（六 B）；

圖（三 C）的 “Lq+’U” 和 “‘+‘U”；圖（三 D）的 “Lq+’U” 與 “‘+‘U”、“‘+‘L”}
這一作用特別導致了上陸 F₀ 音節類（L、U，Lq）裏較高的峰值，L 裏較高的峰值和較後的峰值點，以及 U 和 Uq 裏後置的峰值點。後兩種音節類沒有人們預期的高 F₀ 值的原因在於已被指出的 S₁ 的低聲帶頸動率的內在降壓效應。圖（六 B）表明 Uq 的起始點比長 U 的被壓低得多，Uq 和 U 指標在：後被壓低就是由於同樣的 S₁ 的降壓效應。）可見作用於 Lq 後的音節類的提陞效應是相當一致的。

Lq 後音節類的 D 的變化程度不一。與獨立形式相比，短音節類沒有明顯的變化，長音節類有所縮短，其縮短程度取決於它們的音高指標曲線：音節類縮短約 7 厘秒，是音節類縮短量的一倍（見圖（六 A）和（六 B））。由於縮短程度不同，Lq 後的短音節類的 D 是相應的長音節類的 1/3-1/2。

8.9. Lq 後重讀音節一小結

上述事實表明 Lq 後的音節類形成了一個與非重讀 `` 和 `` 後的音節類不同的 S₂ 变體系列。

與這兩種系列的區別相關的唯一因素是 S₁ 的 D，因此它必須被列為決定 S₂ 聲學形態的要素之一。至於 S₁ 的短 D 如何決定 S₂ 的 F₀ 值上陸，則不是一目了然的。

由於在包含 Lq S₁ 的組合中沒有詞調變化，在這些組合的變體的音韻部份很簡單，就是 S₁ 曲線的簡化。不過我不清楚如何根據現有的區別性特徵系統描寫和解释我們所觀測到的 Lq 後 S₂ 的語音變化方式。

9. 結論

鎮海話中獨立形式單音節的語音聲學形態與雙音節詞的連讀變調形態是有限地聯繫在一起的。這種聯繫通過三種影響從語音角度限定的音節特徵的作用過程而得以實現。第一種是外在的，詞素—音位的過程，表現在－的音節特徵後重讀 S₂ 音節類在縱聚合基礎上的置換。

第二種過程在於外在的重讀效應，即非重讀 S₁ 曲線音高指標變成水平：非重讀 S₂ 音節類顯現一種由重讀 S₁ 限定的“設定值”形態；重讀 S₁ 有上陸的 F₀ 和 Ar，重讀 S₂ 反映縱聚合詞素—音位變化。第三種過程包括 C₂，S₁（可能也包括 S₂）的聲帶頸動率以及 D 對前後兩個音節的 F₀，Ar 和 D 的內在作用，這些變調過程機制導致北部吳語區普遍存在的音節特徵自左往右的中和（但不包括某些吳方言分支如上海話和蘇州話的聲調曲線擴展類型）。以下以“朋友”[pɑ̌ ju li’441]一詞可能有的衍生形式說明本文提出的音韻結構的實現過程：

（1）音韻表達

```
<table>
<thead>
<tr>
<th>獨立形式： [pɑ̌ 231], [ju? 213]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L L</td>
</tr>
</tbody>
</table>

(2) 重讀 S₂ 音高指標曲線同化及音域轉換

```
<table>
<thead>
<tr>
<th></th>
<th>L 'U</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 'U</td>
<td></td>
</tr>
</tbody>
</table>

(3) 非重讀 S₁ 曲線變為水平

```
<table>
<thead>
<tr>
<th>S L</th>
<th>S 'U</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 'U</td>
<td></td>
</tr>
</tbody>
</table>

(4) 音節特徵決定的音高實現

```
<table>
<thead>
<tr>
<th>S L</th>
<th>S 'U</th>
</tr>
</thead>
<tbody>
<tr>
<td>b-p</td>
<td>a-அ/ட/L</td>
</tr>
</tbody>
</table>

(5) 音節特徵決定的音節成份音質變化

```
<table>
<thead>
<tr>
<th>b-p</th>
<th>a-அ/ட/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pɑ̌ ju li’441]</td>
<td></td>
</tr>
</tbody>
</table>
```
重讀這一定音節特徵被引人分析使我們得以以一種自然的語音的方式表達連讀變調，同時
揭示吳方言連讀變調（至少如鎮海話所表達的）並不像 Ballard 認為的那樣在語音上模糊不
清、難以說明。

本文通過對實驗聲學材料的分析，闡述具有語音生成的音韻過程。這是一種有價值的
方法。例如，如果不採用這一方法，就無法從證明 L 後的重讀深層 L 語音有被分析為 U 變體
的可能；也不可能揭示制約非重讀 S2 的“設定值”形態的條件的性質，而這兩種情況在音
韻分析中都是很重要的。此刻，我不由想到。如果趙元任在六十年前以其開拓性文章開始吳
方言的研究的時候擁有我們這樣的材料的話，他的洞察力會引導他關注這些初步的結果的。

注释

1 本文為作者 1983 年在曼谷舉行的第十八屆漢藏語學會上所宣讀的論文的修改稿，這次發表
時作者對原文作了大量補充。儘管在文中沒有具體提及，作者在寫作此文時深深受惠於
Ballard 關於漢語聲調範疇置換的概念和 Kratochvil 關於漢語聲學中重讀的重要性的概
念。作者在此對他們表示感謝。作者還要向南澳大利亞國語中心表示感謝，該中心提供
的纖維內窺鏡設備使本文研究得以完成。

作者願意為有興趣的讀者提供英文稿。

2 其他 吳 方 言 的 聲 學 分 析 見 Zee 和 Maddieson（1980）；廖 興 容（1983）； Chan 和
Ren（1986）。

3 Sherard（1972）。

4 關於伴有聲門摩擦聲語音，參閱 Laver（1980）。摩擦聲語音指一種複合聲帶顫動方式在
鎮海話中出現在開口度相對較小的口腔元音中。嘶啞聲是作者對鎮海話另一種聲帶顫動方
式提出的聽覺術語（Rose, 1982b）。嘶啞聲出現在開口度較大的口腔元音和鼻元音中，
給人的聽覺印象是伴隨有粗糙的室帶聲的一系列的脈衝律動。這些脈衝表現為伴伴有摩擦
聲語音的下巴域音節的音高更低的一種第二音高，所以嘶啞聲是此音高語音（在聲學
上，嘶啞的律動在時域上顯示出規則的雙重或三重波形）。

Laver（1980）認為摩擦聲語音與韻氣聲語音一樣，聲帶都呈最小的內收緊張度，同
時有較低的縱向上的緊張度，與韻氣聲語音不同的是，發摩擦聲語音時，聲帶中部有中等
或強烈的壓縮。光學纖維內窺鏡鏡像表明，當我模擬鎮海話的嘶啞聲音時，聲帶後拉直至
碰到約狀韻骨，以至於聲部差完全開閉而使我們看不到聲帶。在這過程中，整個喉部結
構顫動。當模擬鎮海話中開口度較小的元音的下巴域摩擦聲語音時，聲部呈相似的狀態，
但後拉程度不那麼厲害。（我發現在發較閉元音時，音要發出嘶啞聲，聲部同樣會被拉後
到與發較開元音時同樣的程度。）

因此，鎮海話音系中的下巴域成份在語音上表現為一種複雜的聲部一喉部聲帶顫動形
式。據此我認為鎮海話的摩擦聲語音來自強烈的聲帶中部壓縮而與聲帶的內收緊張則幾乎
完全無關，而嘶啞聲則需要強烈的約狀緊張。由於約狀緊張是將聲部後拉直壓住聲帶和
假聲帶而產生的。因而聲帶的顫動形式也受到影響。既然嘶啞聲不出現在較閉合的口腔元
音中，看來均異處的緊張程度受到某種垂直方向的壓力的內在的制約，這種壓力也許來自軸頸舌肌。

據我所知，以前對任何漢語方言的描寫都沒有提及嘶啞聲。按照Ladefoged（1983）的描寫和我對有關錄音帶的聽覺印象，嘶啞聲可能與布什曼語（Bushman）中霍語（\textit{x soda})的室帶型相似。這種音質是通過收縮喉頭上部以使均異肌後部幾乎與會厭根部接觸而產生的。在這個音質的錄音材料中（例如！ao “底”），十個發音人中有一個具有與漢海話的嘶啞聲聽覺上相同的音質（其餘九個缺乏強烈的緊張脅動）。

⑤Rose（1984）。

⑥Rose（1982a, 1982b, 1987）。注意：漢海話不同聲帶顫動方式的聲學特徵還未被研究過。

⑦Rose即將發表。

⑧關於銅語“外在的”和“內在的”，參閱Tatham（1971）。

⑨在下列情況下不可能控制S_1的組成成份（參看圖（二）的聲學模式）：（1）$\text{L} + ' \text{Lq}$（組合9），九個S_1中六個有短元音音加軸頸鼻音n，這引起了Ar的突然下降；（2）$\text{U} + \text{Lq}$（組合11），八個S_1中五個有前舌尖元音$[1]$，這導致離陸的Ar起始部份，同時可能導致F_0起始部份波動的消失；（3）$\text{U} + \text{Lq}$（組合16），平均的Ar曲線源自五個S_1中的三個雙元音。

⑩當S_1為短音節時，大約3.3秒的平均值之間的差別總是具有統計上的意義。而當S_1為長音節時，大多數差異超過了5.3秒，但是在八個組合中，祇有兩個是具有統計意義的，八個組合中的另兩個表明這C_5前的S_1事實上稍微短一些。

⑪S_2 F_0起始高度的作用可見於S_1後部20%的F_0值。當S_2 F_0起始較高時，S_1 D的80%處的F_0值與100%處的F_0值之間的差異略大一些（試比較在$\text{L} + ' \text{L}$（組合8）和$\text{L} + ' \text{L}$（組合14）中S_1的F_0尾部曲線）。長短S_1的差別與S_1的兩個聲學特徵稍有有關聯。對變異的單向分析顯示一種趨勢（$p < 0.1$），即短S_1前的長平S_1要短大約3.3秒。同時我們發現一個極為細微的跡象，即S_1的F_0受到短S_2起始部份後稍高的F_0的逆向同化，而這些S_2的較高的F_0值本身可能反映了短音節尾喉塞音對聲帶緊張度的逆向同化。

⑫這指Ar對F_0基線回歸的相關值。回歸測定點在短音節D的60%和80%處，長音節D的20%、40%、60%和80%處。這裏與在其他地方一樣，可能反映了與迅速改變的聲道阻塞狀態和聲門部份狀態有關的內在作用的F_0和Ar數據點沒有被用於回歸的事實。

⑬Lehiste（1970）。

⑭這一區別的聲學表現形式可參阅Rose（即將發表）圖（一）。

⑮Lq後的L和其它兩種下音域音節類在C_2的Ar下降程度的區別可能反映了$Lq + ' \text{L}$組合中阻塞音所佔的絕大比例。

⑯大部份濁C_2後S_2的D長1.5–2.0秒（這一差異對許多短音節來說具有統計上的意義，以下不再重提這點）。注意這一D的增長與濁C_2 F_0的（不可間斷的）內在慣性造成的F_0曲線高度成正比。這一聯繫與在S_1中看到的F_0的（可間斷的）內在作用性質正相反，在S_1，F_0曲線高度與D的短縮有關。

⑰具有下降F_0的音節的D與F_0音域成正比例（Hombert, 1977）。
例如在D的20%處，Uq後的非重讀S2的F0比重讀S2（’＝’）高15赫茲，但同一點上的
Ar低1.3分貝；又如’後的非重讀S2 20%處的F0比重讀S2（’＝’）的高8赫茲，但同一點
上的Ar低0.9分貝。所有這些差異都具有統計上的意義。注意：無論是通過線性還是二次
多項式回歸，我們都無法說明重讀與非重讀S2的Ar和F0之間聯繫的全面差異。

最佳的曲線表達是擬合所有數據點（’＝’音節和Uq音節）或最後三個數據點（’＝’音節）的
最小平方直稜，這樣，我們可得到從正負誤差2.1赫茲（’＝’後）到正負誤差13.2赫茲
（’＝’後）的達到90%的信度界限。

雖然Lq後的Uq的F0值與’（尤其是’）後的Uq指標沒有具有統計意義的區別，我們仍
應注意Lq後的Uq的F0曲線形式與’後的Uq指標的曲線不同：它的峰值在凹形的彎起點
（比較圖（六B）與（五B）中的Uq）。不過Lq後的Uq和’後的Uq指標在聽覺上沒有
分別。

我們沒有用不同音高記錄Lq後的＝和’後的＝指標，儘管它們的F0形式不一。這兩
種音節類變音高與不同的F0相應的差異在聽覺上是可感知，但是那只是在聲學分析已
經揭示了這一差異以後。

Ballard (1980)。

參考書目

廖黃益（1983）。蘇州話單字調、雙字調的實驗研究。《語言研究》，1983·2·41-83。

Chan, Marjorie K.M. & Hong-Mo Ren (1986). Wuxi tone sandhi: from last to first syllable
dominance. UCLA Working Papers in Phonetics, 63.48-70.

Hombert, J.M. (1977). Difficulty of producing different F0 in speech. UCLA Working

The Production of Speech. New York: Springer, 177-188.

University Press.

Bradley (ed.), Tonation. Pacific Linguistics Papers in S.E. Asian Linguistics 8, Series A,
62.133-168.

——— (1982b). An Acoustically Based Phonetic Description of the Syllable in the

